We prove, under generic assumptions, that the special variational traveling
wave that minimizes the exponentially weighted Ginzburg-Landau functional
associated with scalar reaction-diffusion equations in infinite cylinders is
the long-time attractor for the solutions of the initial value problems with
front-like initial data. The convergence to this traveling wave is
exponentially fast. The obtained result is mainly a consequence of the gradient
flow structure of the considered equation in the exponentially weighted spaces
and does not depend on the precise details of the problem. It strengthens our
earlier generic propagation and selection result for "pushed" fronts.Comment: 23 page