ИСТОЧНИК ЗАХВАТНОГО ГАММА-ИЗЛУЧЕНИЯ С ЭНЕРГИЯМИ ДО 7 МэВ И ДО 10 МэВ НА ОСНОВЕ ПОВЕРОЧНОЙ УСТАНОВКИ НЕЙТРОННОГО ИЗЛУЧЕНИЯ

Abstract

Wide spread of technogenic sources of ionizing radiation such as particle accelerators and nuclear reactors leads to appearance of a number of applied metrological tasks aimed at providing spectrometric and dosimetric ionization measurement instruments, located in photon radiation fields with energy to 10 MeV. Gamma rays with energy higher 3 MeV may be acquired using radioactive thermal neutron capture on target, i.e. (n, γ)-nuclear reaction. Titanium is used in the range of energies to 7 MeV; nickel – to 10 MeV. A simplest source of instantaneous neutron capture gamma-ray should consist of fast neutron source, neutron moderator and a target irradiated with thermal neutrons. The collimator with thermal neutron geometry of АТ140 neutron calibration facility with 238Pu–Be fast neutron source may be used (IBN–8–6) as a source of gamma-ray with energy to 10 MeV. Monte-Carlo models of thermal neutrons geometry, facility and 238Pu–Be fast neutron source were built using MCNP–4b code. Energy distribution of flux density of neutron capture gamma–ray for titanium and nickel targets was defined. A spectrometric detector based on LaBr3(Ce) crystal Ø 38×38 mm with non-linear characteristics of channel-energy transformation in the range up to 10 MeV, was specifically manufactured for instrumental support of the experiment at SPE “ATOMTEX”. The results for Ti, Ni, and for bare 238Pu–Be neutron source were acquired. During the experiment a possibility to use neutron capture gamma-ray field formed by thermal neutrons geometry of АТ140 neutron calibration facility with 238Pu–Be-fast neutron source with Ti and Ni targets for calibration LaBr3(Ce) spectrometers for energy to 10 MeV was confirmed. Closely stationing polyethylene plate in collimator channel provides significant increase in output of reference radiation from target simultaneously decreasing unneeded parts of the spectrum. Широкое распространение и использование техногенных источников ионизирующих излучений, в частности таких, как ускорители заряженных частиц и ядерные реакторы, приводит к появлению ряда прикладных задач по метрологическому обеспечению спектрометрической и дозиметрической аппаратуры, работающей в полях фотонного излучения с энергией до 10 МэВ. Контейнер-коллиматор с геометрией тепловых нейтронов установки поверочной нейтронного излучения (УПН- АТ140, УП «АТОМТЕХ») формирует коллимированный пучок нейтронов со значительной составляющей нейтронов тепловых энергий. Расположение в потоке тепловых нейтронов диска из титана позволяет получить поле захватного гамма-излучения до 7 МэВ, а диска из никеля – до 10 МэВ. Для экспериментального изучения спектральных характеристик поля захватного излучения использовался специализированный спектрометрический блок детектирования на основе кристалла LaBr3(Ce) с размерами Ø 38×38 мм с нелинейной характеристикой преобразования канал-энергия в диапазоне до 10 МэВ. На спектрах хорошо различимы основные линии захватного излучения от водорода, бора, титана и никеля. По полученным на блоке детектирования спектрам можно сделать вывод о возможности калибровки спектрометрических блоков в поле захватного гамма-излучения до 10 МэВ.

    Similar works