Thermal and Mechanical Response of Inner Cone Sample of ZrB₂-SiC Ceramic under Arc-Jet Conditions

Abstract

Under arc-jet test conditions, ZrB2-SiC ceramic will undergo high temperature oxidation and develop an external glassy layer (SiO2), zirconia sub-layer (ZrO2) and SiC-depleted diboride layer (ZrB2). This study relates to finite element modeling of the effects of oxidation on heat transfer and mechanical behavior of ZrB2-SiC ceramic under arc-jet test conditions. A steady-state heat transfer FE method was employed to conduct the heat transfer analysis to obtain the temperature distribution in the inner body of the cone. The surface thermal conditions available in the literature were used in the heat transfer analysis. The resulting temperature distribution in the inner body of the cone is then applied to the thermomechanical finite element analysis to calculate the thermal stress distribution. The results show that the oxide layers affect both thermal and mechanical response of the ZrB2-SiC ceramic under arc-jet high temperature test conditions. Due to the mismatch of material properties between the bulk ZrB2-SiC and its new products after oxidation, the outer oxide layers constrain the thermal deformation of the inner bulk ZrB2-SiC thereby putting it in compression and outside oxide layers in tension

    Similar works