After decades of high deer populations, North American forests have lost much of their previous biodiversity. Any landscape‐level recovery requires substantial reduc‐ tions in deer herds, but modern societies and wildlife management agencies appear unable to devise appropriate solutions to this chronic ecological and human health crisis. We evaluated the effectiveness of fertility control and hunting in reducing deer impacts at Cornell University. We estimated spring deer populations and planted Quercus rubra seedlings to assess deer browse pressure, rodent attack, and other factors compromising seedling performance. Oak seedlings protected in cages grew well, but deer annually browsed ≥60% of unprotected seedlings. Despite female ster‐ ilization rates of \u3e90%, the deer population remained stable. Neither sterilization nor recreational hunting reduced deer browse rates and neither appears able to achieve reductions in deer populations or their impacts. We eliminated deer sterilization and recreational hunting in a core management area in favor of allowing volunteer arch‐ ers to shoot deer over bait, including at night. This resulted in a substantial reduction in the deer population and a linear decline in browse rates as a function of spring deer abundance. Public trust stewardship of North American landscapes will require a fundamental overhaul in deer management to provide for a brighter future, and oak seedlings may be a promising metric to assess success. These changes will re‐ quire intense public debate and may require new approaches such as regulated com‐ mercial hunting, natural dispersal, or intentional release of important deer predators (e.g., wolves and mountain lions). Such drastic changes in deer management will be highly controversial, and at present, likely difficult to implement in North America. However, the future of our forest ecosystems and their associated biodiversity will depend on evidence to guide change in landscape management and stewardship