CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
非均质Cosserat连续体细-宏观均匀化条件
Authors
刘其鹏
刘晓宇
高月华
Publication date
1 January 2013
Publisher
Abstract
基于平均场理论的多尺度模拟关键问题之一是给定恰当的代表性体积单元(RVE)的边界条件,以使均匀化过程满足Hill-Mandel细宏观能量等价条件,也即Hill宏观均匀化条件.对于非均质Cosserat连续体,已有的研究工作只能得到合理的混合平动位移-偶应力表征元边界条件,常用的一致平动位移-转角以及周期边界条件等均不能使用,给计算均匀化算法推导和实施带来了困难,也阻碍了多尺度分析方法的进一步发展与应用.为此,论文在推导和建立一个新的Hill定理版本基础上,不仅成功地给定了多种强形式表征元边界条件,而且构造出了合理的弱形式周期边界条件,这些条件既满足细宏观能量等价也符合一阶平均场理论基本假定,可在均匀化方法中推广与应用
Similar works
Full text
Available Versions
Institute Of Mechanics,Chinese Academy of Sciences
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:dspace.imech.ac.cn:311007/...
Last time updated on 18/12/2019