Citrate assisted solvothermal synthesis of beta-NaYF4: Yb, Er up-converting nanoparticles

Abstract

Thanks to the unique optical properties, up-converting nanoparticles (UCNPs) have a wide application in optoelectronics, forensics, security and biomedicine. The synthesis of the most efficient hexagonal β-NaYF4: Yb/Er phase is usually performed through thermal decomposition of organic precursors which could cause the UCNP cytotoxicity. Since cubic polymorph is kinetically more stable than hexagonal, we used citric acid and Na-citrate for the nucleation of hexagonal NaYF4: Yb, Er phase in nanosized particles. Additionally, effect of different precipitation agents (NaF, NH4F and NH4HF2) used during solvothermal synthesis is explored. The XRPD analysis showed that using of citric acid led to a product composed from mixture of cubic and hexagonal NaYF4: Yb/Er phase, while the presence of Na-citrate influences the nucleation of well crystallized hexagonal β-NaYF4: Yb/Er phase, regardless of precipitation agents used. All samples are composed of polycrystalline spherical particles which size is influenced by the precursor chemistry. UCNPs emit intense green emission due to the (2H11/2, 4S3/2) → 4I15/2 electronic transitions, after been excited with infrared light (λ=978 nm)

    Similar works