For ergodic 1d Jacobi operators we prove that the random singular components
of any spectral measure are almost surely mutually disjoint as long as one
restricts to the set of positive Lyapunov exponent. In the context of extended
Harper's equation this yields the first rigorous proof of the Thouless' formula
for the Lyapunov exponent in the dual regions.Comment: to appear in the Journal of Mathematical Physics, vol 52 (2011