Magnetic reconnection is commonly perceived to drive flow and particle
acceleration in flares of solar, stellar, and astrophysical disk coronae but
the relative roles of different acceleration mecha- nisms in a given
reconnection environment are not well understood. We show via direct numerical
simulations that reconnection outflows produce weak fast shocks, when
conditions for fast recon- nection are met and the outflows encounter an
obstacle. The associated compression ratios lead to a Fermi acceleration
particle spectrum that is significantly steeper than the strong fast shocks
commonly studied, but consistent with the demands of solar flares. While this
is not the only acceleration mechanism operating in a reconnection environment,
it is plausibly a ubiquitous one