In the field of structural reliability, the Monte-Carlo estimator is
considered as the reference probability estimator. However, it is still
untractable for real engineering cases since it requires a high number of runs
of the model. In order to reduce the number of computer experiments, many other
approaches known as reliability methods have been proposed. A certain approach
consists in replacing the original experiment by a surrogate which is much
faster to evaluate. Nevertheless, it is often difficult (or even impossible) to
quantify the error made by this substitution. In this paper an alternative
approach is developed. It takes advantage of the kriging meta-modeling and
importance sampling techniques. The proposed alternative estimator is finally
applied to a finite element based structural reliability analysis.Comment: 8 pages, 3 figures, 1 table. Preprint submitted to ICASP11
Mini-symposia entitled "Meta-models/surrogate models for uncertainty
propagation, sensitivity and reliability analysis