Homologous classes of Polycyclic Aromatic Hydrocarbons (PAHs) in their
crystalline state are among the most promising materials for organic
opto-electronics. Following previous works on oligoacenes we present a
systematic comparative study of the electronic, optical, and transport
properties of oligoacenes, phenacenes, circumacenes, and oligorylenes. Using
density functional theory (DFT) and time-dependent DFT we computed: (i)
electron affinities and first ionization energies; (ii) quasiparticle
correction to the highest occupied molecular orbital (HOMO)-lowest unoccupied
molecular orbital (LUMO) gap; (iii) molecular reorganization energies; (iv)
electronic absorption spectra of neutral and ±1 charged systems. The
excitonic effects are estimated by comparing the optical gap and the
quasiparticle corrected HOMO-LUMO energy gap. For each molecular property
computed, general trends as a function of molecular size and charge state are
discussed. Overall, we find that circumacenes have the best transport
properties, displaying a steeper decrease of the molecular reorganization
energy at increasing sizes, while oligorylenes are much more efficient in
absorbing low-energy photons in comparison to the other classes.Comment: 26 pages, 9 figures, 4 tables, accepted for pubblication in Chemical
Physics (14/04/2011