(CYCLOPENTADIENONE)IRON COMPLEXES IN REACTIONS INVOLVING HYDROGEN TRANSFER

Abstract

The PhD project focused on the synthesis and catalytic applications of (cyclopentadienone)iron complexes in reactions involving hydrogen transfer. The manuscript is divided into five chapters, and after a rather comprehensive review on the state of the art in chapter 1, the thesis describes, in the remaining four chapters, the original achievements of the PhD candidate. In particular, chapter 2 describes the applications of highly active [bis(hexamethylene)cyclopentadienone]iron tricarbonyl pre-catalyst for the reduction of imine bonds under transfer hydrogenation conditions and for the reductive amination of carbonyl compounds. In chapter 3, the application of the above mentioned pre-catalyst to alcohol amination reactions via a hydrogen borrowing mechanism is discussed. Chapter 4 deals with enantioselective ketone hydrogenations using chiral (cyclopentadienone)iron complexes containing a stereogenic plane (prepared in racemic form and resolved by chiral HPLC), and with the synthesis of chiral macrocyclic (cyclopentadienone)iron complexes, putatively more suited for the transfer of the chiral information from the catalyst to the substrate. Finally, Chapter 5 describes the immobilization of (cyclopentadienone)iron complexes into a solid support, namely Metal Organic Frameworks (MOFs), to realize an active heterogeneous (cyclopentadienone)iron catalyst for catalyst recycling in batch hydrogenation reactions and potential applications in flow processes

    Similar works