This report analyses the worldwide landscape of the Earth observation ecosystem to identify opportunities, synergies, and obstacles that need to be addressed to foster the development of a vibrant space data economy in Europe. The report uses the Techno-Economic Segment (TES) analytical approach to provide a holistic view of the EO and geospatial ecosystem in Europe and worldwide through the identification of players and key clusters of activities. It also takes into consideration the potential flows of knowledge resulting from shared activities, locations and technological fields. The approach adopts a micro-based perspective considering a wide range of both horizontal and segment specific data sources. The outcome is a compelling characterisation of the key features of this very dynamic ecosystem.
The TES EO ecosystem shows a very diverse global landscape with three distinguished global hubs, namely EU28, China and the US, as possible incubators for EO-linked innovation. Those hubs have the largest number of players in case of R&D and well as in case of industry. Nevertheless, the distribution of EO activities and concentration of those activities look quite different in the three leading macro areas.
As far as the R&D activities are considered, the EU28 has the highest overall number of players involved in the all types of R&D activities, but scores quite low if only the patents are taken into account.
Out of the three big players, the US has the smallest number of players involved in the overall EO R&D and stable position in number of patenting. In case of China, the largest number of R&D activities is concentrated in hands of relatively few players.
In conclusion, the findings of this report confirm a general expectation about the growth in the EO downstream segment. However, up to 2017 the growth has not been staggering. Since 2017, there have been continuous policy efforts to increase the uptake of EO data in order to enable market growth.JRC.B.6-Digital Econom