We study the propagation of quasi-discrete microwave solitons in a nonlinear
left-handed coplanar waveguide coupled with split ring resonators. By
considering the relevant transmission line analogue, we derive a nonlinear
lattice model which is studied analytically by means of a quasi-discrete
approximation. We derive a nonlinear Schr{\"o}dinger equation, and find that
the system supports bright envelope soliton solutions in a relatively wide
subinterval of the left-handed frequency band. We perform systematic numerical
simulations, in the framework of the nonlinear lattice model, to study the
propagation properties of the quasi-discrete microwave solitons. Our numerical
findings are in good agreement with the analytical predictions, and suggest
that the predicted structures are quite robust and may be observed in
experiments