With the explosive increase in the amount of data being generated by various applications, large-scale distributed and parallel storage systems have become common data storage solutions and been widely deployed and utilized in both industry and academia. While these high performance storage systems significantly accelerate the data storage and retrieval, they also bring some critical issues in system maintenance and management. In this dissertation, I propose three methodologies to address three of these critical issues.
First, I develop an optimal resource management and spare provisioning model to minimize the impact brought by component failures and ensure a highly operational experience in maintaining large-scale storage systems. Second, in order to cost-effectively integrate solid-state drives (SSD) into large-scale storage systems, I design a holistic algorithm which can adaptively predict the popularity of data objects by leveraging temporal locality in their access pattern and adjust their placement among solid-state drives and regular hard disk drives so that the data access throughput as well as the storage space efficiency of the large-scale heterogeneous storage systems can be improved. Finally, I propose a new checkpoint placement optimization model which can maximize the computation efficiency of large-scale scientific applications while guarantee the endurance requirements of the SSD-based burst buffer in high performance hierarchical storage systems. All these models and algorithms are validated through extensive evaluation using data collected from deployed large-scale storage systems and the evaluation results demonstrate our models and algorithms can significantly improve the reliability and efficiency of large-scale distributed and parallel storage systems