research

Product formula for p-adic epsilon factors

Abstract

Let X be a smooth proper curve over a finite field of characteristic p. We prove a product formula for p-adic epsilon factors of arithmetic D-modules on X. In particular we deduce the analogous formula for overconvergent F-isocrystals, which was conjectured previously. The p-adic product formula is the equivalent in rigid cohomology of the Deligne-Laumon formula for epsilon factors in l-adic \'etale cohomology (for a prime l different from p). One of the main tools in the proof of this p-adic formula is a theorem of regular stationary phase for arithmetic D-modules that we prove by microlocal techniques.Comment: Revised version: some proofs and constructions detailed, notation improved, index of notation added ; 88 page

    Similar works

    Full text

    thumbnail-image

    Available Versions