We used WIRCam on CFHT to observe four transits of the super-Earth GJ 1214b
in the near-infrared. For each transit we observed in two bands
nearly-simultaneously by rapidly switching the WIRCam filter wheel back and
forth for the duration of the observations. By combining all our J-band (~1.25
microns) observations we find a transit depth in this band of 1.338\pm0.013% -
a value consistent with the optical transit depth reported by Charbonneau and
collaborators. However, our best-fit combined Ks-band (~2.15 microns) transit
depth is deeper: 1.438\pm0.019%. Formally our Ks-band transits are deeper than
the J-band transits observed simultaneously by a factor of 1.072\pm0.018 - a
4-sigma discrepancy. The most straightforward explanation for our deeper
Ks-band depth is a spectral absorption feature from the limb of the atmosphere
of the planet; for the spectral absorption feature to be this prominent the
atmosphere of GJ 1214b must have a large scale height and a low mean molecular
weight. That is, it would have to be hydrogen/helium dominated and this planet
would be better described as a mini-Neptune. However, recently published
observations from 0.78 - 1.0 microns, by Bean and collaborators, show a lack of
spectral features and transit depths consistent with those obtained by
Charbonneau and collaborators. The most likely atmospheric composition for GJ
1214b that arises from combining all these observations is less clear; if the
atmosphere of GJ 1214b is hydrogen/helium dominated then it must have either a
haze layer that is obscuring transit depth differences at shorter wavelengths,
or significantly different spectral features than current models predict. Our
observations disfavour a water-world composition, but such a composition will
remain a possibility until observations reconfirm our deeper Ks-band transit
depth or detect features at other wavelengths. [Abridged]Comment: ApJ accepted. 12 pages, 6 figures, in EmulateApJ forma