Comparison of chromatographic methods for quality control of DMSA complexes with 99mTc and 188Re at (III) and (V) oxidation states

Abstract

BACKGROUND: The reliable method for determination ofidentity and radiochemical purity (RCP) is of great importancein radiopharmaceutical development. This is especially relevantwhen more than one form of radiometal/ligand complex can beformed during radiolabelling, such as complexes of 99mTc or 188Rewith meso-2,3-dimercaptosuccinic acid (DMSA), where dependingon the pH, metal can occur either at +3 or +5 oxidation state.The aim of our study was to evaluate possibilities for optimizationof chromatographic systems leading to specific and reliableanalytical method for determination of the identity and RCP ofDMSA complexes with 99mTc or 188Re.MATERIAL AND METHODS: The commercial DMSA kits(POLATOM) were used for preparation of technetium-99m (III) and (V) complexes with DMSA. 99mTc(V)-DMSA complexeswere prepared by addition of NaHCO3 to the kit vial prior to99mTc-eluate to obtain pH ~8. 188Re(V)-DMSA was prepared eitherdirectly or using intermediate 188Re(III)-EDTA complex addedto DMSA. RCP was evaluated by TLC using: ITLC-SG developedin methylethylketon, SG60 coated plates developed in:n-BuOH/H2O/CH3COOH and n-PrOH/H2O/CH3COOH systems,and in H2O. Comparative biodistribution studies were performedin normal Wistar rats.RESULTS: Using silica gel plates and n-PrOH, H2O and aceticacid in the developing solution, we observed that 99mTc/188Re(III)-DMSA and 99mTc/188Re(V)-DMSA complexes could be wellseparated from each other and from the impurities in the formof free pertechnetate/perrhenate. In vivo studies showed quitedifferent biodistribution of 99mTc(III)- and 99mTc(V)-DMSA. Thetrivalent complex accumulated mainly in kidneys (>40%ID),while 99mTc(V)-DMSA revealed high excretion with urine andrelatively high concentration in osseous tissue (ca. 2 %ID/g).Accumulation of this complex in kidneys was very low (ca.2.5 %ID). Biodistribution pattern of 188Re(V)-DMSA prepareddirectly was almost identical to that of 99mTc(V)-DMSA. Biodistributionresults of the 188Re preparation obtained using 188Re(III)-EDTA intermediate indicated that the preparation contained themixture of penta- and trivalent 188Re complexes. The quite highaccumulation of radioactivity in kidneys (23 %ID) gave evidenceof the presence of 188Re(III)-DMSA in this preparation, what wasalso confirmed by the results of TLC analysis performed usingsilica gel plate and n-propanol/water/acetic acid as developingsystem. CONCLUSIONS: Based on our study, we have made recommendationon the suitable methods for investigations of RCP ofDMSA complexes, i.e.: SG60 plates developed in the mixtureof n-propanol/water/acetic acid, which enable determination of the tri- and pentavalent DMSA complexes, as well as, thepertechnetate/perrhenate impurity, and developed in water fordetermination of the colloidal residue.BACKGROUND: The reliable method for determination ofidentity and radiochemical purity (RCP) is of great importancein radiopharmaceutical development. This is especially relevantwhen more than one form of radiometal/ligand complex can beformed during radiolabelling, such as complexes of 99mTc or 188Rewith meso-2,3-dimercaptosuccinic acid (DMSA), where dependingon the pH, metal can occur either at +3 or +5 oxidation state.The aim of our study was to evaluate possibilities for optimizationof chromatographic systems leading to specific and reliableanalytical method for determination of the identity and RCP ofDMSA complexes with 99mTc or 188Re.MATERIAL AND METHODS: The commercial DMSA kits(POLATOM) were used for preparation of technetium-99m (III) and (V) complexes with DMSA. 99mTc(V)-DMSA complexeswere prepared by addition of NaHCO3 to the kit vial prior to99mTc-eluate to obtain pH ~8. 188Re(V)-DMSA was prepared eitherdirectly or using intermediate 188Re(III)-EDTA complex addedto DMSA. RCP was evaluated by TLC using: ITLC-SG developedin methylethylketon, SG60 coated plates developed in:n-BuOH/H2O/CH3COOH and n-PrOH/H2O/CH3COOH systems,and in H2O. Comparative biodistribution studies were performedin normal Wistar rats.RESULTS: Using silica gel plates and n-PrOH, H2O and aceticacid in the developing solution, we observed that 99mTc/188Re(III)-DMSA and 99mTc/188Re(V)-DMSA complexes could be wellseparated from each other and from the impurities in the formof free pertechnetate/perrhenate. In vivo studies showed quitedifferent biodistribution of 99mTc(III)- and 99mTc(V)-DMSA. Thetrivalent complex accumulated mainly in kidneys (>40%ID),while 99mTc(V)-DMSA revealed high excretion with urine andrelatively high concentration in osseous tissue (ca. 2 %ID/g).Accumulation of this complex in kidneys was very low (ca.2.5 %ID). Biodistribution pattern of 188Re(V)-DMSA prepareddirectly was almost identical to that of 99mTc(V)-DMSA. Biodistributionresults of the 188Re preparation obtained using 188Re(III)-EDTA intermediate indicated that the preparation contained themixture of penta- and trivalent 188Re complexes. The quite highaccumulation of radioactivity in kidneys (23 %ID) gave evidenceof the presence of 188Re(III)-DMSA in this preparation, what wasalso confirmed by the results of TLC analysis performed usingsilica gel plate and n-propanol/water/acetic acid as developingsystem.CONCLUSIONS: Based on our study, we have made recommendationon the suitable methods for investigations of RCP ofDMSA complexes, i.e.: SG60 plates developed in the mixtureof n-propanol/water/acetic acid, which enable determination of the tri- and pentavalent DMSA complexes, as well as, thepertechnetate/perrhenate impurity, and developed in water fordetermination of the colloidal residue

    Similar works