research

Fast Local Computation Algorithms

Abstract

For input xx, let F(x)F(x) denote the set of outputs that are the "legal" answers for a computational problem FF. Suppose xx and members of F(x)F(x) are so large that there is not time to read them in their entirety. We propose a model of {\em local computation algorithms} which for a given input xx, support queries by a user to values of specified locations yiy_i in a legal output y∈F(x)y \in F(x). When more than one legal output yy exists for a given xx, the local computation algorithm should output in a way that is consistent with at least one such yy. Local computation algorithms are intended to distill the common features of several concepts that have appeared in various algorithmic subfields, including local distributed computation, local algorithms, locally decodable codes, and local reconstruction. We develop a technique, based on known constructions of small sample spaces of kk-wise independent random variables and Beck's analysis in his algorithmic approach to the Lov{\'{a}}sz Local Lemma, which under certain conditions can be applied to construct local computation algorithms that run in {\em polylogarithmic} time and space. We apply this technique to maximal independent set computations, scheduling radio network broadcasts, hypergraph coloring and satisfying kk-SAT formulas.Comment: A preliminary version of this paper appeared in ICS 2011, pp. 223-23

    Similar works

    Full text

    thumbnail-image

    Available Versions