We introduce functional norms for hyperbolic Young towers which allow us to directly study the transfer operator on the full tower. By eliminating the need for secondary expanding towers commonly employed in this context, this approach simplifies and expands the analysis of this class of Markov extensions and the underlying systems for which they are constructed. As an example, we prove large-deviation estimates with a uniform rate function for a large class of non-invariant measures and show how to translate these to the underlying system