A group G is termed discriminating if every group separated by G is discriminated by G. In this paper we answer several questions concerning discrimination which arose from [2]. We prove that a finitely generated equationally Noetherian group G is discriminating if and only if the quasivariety generated by G is the minimal universal class containing G. Among other results, we show that the non-abelian free nilpotent groups are non-discriminating. Finally we list some open problems concerning discriminating groups