Effect of reconstruction algorithms on the accuracy of (99m)Tc sestamibi SPECT/CT parathyroid imaging

Abstract

The superiority of SPECT/CT over SPECT for (99m)Tc-sestamibi parathyroid imaging often is assumed to be due to improved lesion localization provided by the anatomic component (computed tomography) of the examination. It also is possible that this superiority may be related to the algorithms used for SPECT data reconstruction. The objective of this investigation was to determine the effect of SPECT reconstruction algorithms on the accuracy of MIBI SPECT/CT parathyroid imaging. We retrospectively analyzed preoperative MIBI SPECT/CT parathyroid imaging studies performed on 106 patients. SPECT data were reconstructed by filtered back projection (FBP) and by iterative reconstruction with corrections for collimator resolution recovery and attenuation (IRC). Two experienced readers independently graded lesion detection certainty on a 5-point scale without knowledge of each other\u27s readings, reconstruction methods, other test results or final diagnoses. All patients had surgical confirmation of the final diagnosis, including disease limited to the neck, and location and weight of excised lesion(s). There were 135 parathyroid lesions among the 106 patients. For FBP SPECT/CT and IRC SPECT/CT sensitivity was 76% and 90% (p = 0.003), specificity was 87% and 87% (p = 0.90), and accuracy was 83% and 88% (p = 0.04), respectively. Inter-rater agreement was significantly higher for IRC than for FBP (kappa = 0.76, good agreement , versus kappa = 0.58, moderate agreement , p \u3c 0.0001). We conclude that the improved accuracy of MIBI SPECT/CT compared to MIBI SPECT for preoperative parathyroid lesion localization is due in part to the use of IRC for SPECT data reconstruction

    Similar works