The process of relaxation of a system of particles interacting with
long-range forces is relevant to many areas of Physics. For obvious reasons, in
Stellar Dynamics much attention has been paid to the case of 1/r^2 force law.
However, recently the interest in alternative gravities emerged, and
significant differences with respect to Newtonian gravity have been found in
relaxation phenomena. Here we begin to explore this matter further, by using a
numerical model of spherical shells interacting with an 1/r^alpha force law
obeying the superposition principle. We find that the virialization and
phase-mixing times depend on the exponent alpha, with small values of alpha
corresponding to longer relaxation times, similarly to what happens when
comparing for N-body simulations in classical gravity and in Modified Newtonian
Dynamics.Comment: 6 pages, 3 figures, accepted in the International Journal of
Bifurcation and Chao