research

Selective Sharing for Multilingual Dependency Parsing

Abstract

We present a novel algorithm for multilingual dependency parsing that uses annotations from a diverse set of source languages to parse a new unannotated language. Our motivation is to broaden the advantages of multilingual learning to languages that exhibit significant differences from existing resource-rich languages. The algorithm learns which aspects of the source languages are relevant for the target language and ties model parameters accordingly. The model factorizes the process of generating a dependency tree into two steps: selection of syntactic dependents and their ordering. Being largely language-universal, the selection component is learned in a supervised fashion from all the training languages. In contrast, the ordering decisions are only influenced by languages with similar properties. We systematically model this cross-lingual sharing using typological features. In our experiments, the model consistently outperforms a state-of-the-art multilingual parser. The largest improvement is achieved on the non Indo-European languages yielding a gain of 14.4%.National Science Foundation (U.S.) (IIS-0835445)United States. Multidisciplinary University Research Initiative (W911NF-10-1-0533)United States. Defense Advanced Research Projects Agency. Broad Operational Language Translatio

    Similar works