research

Inhomogenous electronic structure, transport gap, and percolation threshold in disordered bilayer graphene

Abstract

The inhomogenous real-space electronic structure of gapless and gapped disordered bilayer graphene is calculated in the presence of quenched charge impurities. For gapped bilayer graphene we find that for current experimental conditions the amplitude of the fluctuations of the screened disorder potential is of the order of (or often larger than) the intrinsic gap Δ\Delta induced by the application of a perpendicular electric field. We calculate the crossover chemical potential, Δcr\Delta_{\rm cr}, separating the insulating regime from a percolative regime in which less than half of the area of the bilayer graphene sample is insulating. We find that most of the current experiments are in the percolative regime with Δcr<<Δ\Delta_{\rm cr}<<\Delta. The huge suppression of Δcr\Delta_{\rm cr} compared with Δ\Delta provides a possible explanation for the large difference between the theoretical band gap Δ\Delta and the experimentally extracted transport gap.Comment: 5 Pages, 2 figures. Published versio

    Similar works

    Full text

    thumbnail-image

    Available Versions