There are a number of situations in which several signals are simultaneously
recorded in complex systems, which exhibit long-term power-law
cross-correlations. The multifractal detrended cross-correlation analysis
(MF-DCCA) approaches can be used to quantify such cross-correlations, such as
the MF-DCCA based on detrended fluctuation analysis (MF-X-DFA) method. We
develop in this work a class of MF-DCCA algorithms based on the detrending
moving average analysis, called MF-X-DMA. The performances of the MF-X-DMA
algorithms are compared with the MF-X-DFA method by extensive numerical
experiments on pairs of time series generated from bivariate fractional
Brownian motions, two-component autoregressive fractionally integrated moving
average processes and binomial measures, which have theoretical expressions of
the multifractal nature. In all cases, the scaling exponents hxy extracted
from the MF-X-DMA and MF-X-DFA algorithms are very close to the theoretical
values. For bivariate fractional Brownian motions, the scaling exponent of the
cross-correlation is independent of the cross-correlation coefficient between
two time series and the MF-X-DFA and centered MF-X-DMA algorithms have
comparative performance, which outperform the forward and backward MF-X-DMA
algorithms. We apply these algorithms to the return time series of two stock
market indexes and to their volatilities. For the returns, the centered
MF-X-DMA algorithm gives the best estimates of hxy(q) since its
hxy(2) is closest to 0.5 as expected, and the MF-X-DFA algorithm has the
second best performance. For the volatilities, the forward and backward
MF-X-DMA algorithms give similar results, while the centered MF-X-DMA and the
MF-X-DFA algorithms fails to extract rational multifractal nature.Comment: 15 pages, 4 figures, 2 matlab codes for MF-X-DMA and MF-X-DF