research

Renyi Entropy and Parity Oscillations of the Anisotropic Spin-s Heisenberg Chains in a Magnetic Field

Abstract

Using the density matrix renormalization group, we investigate the Renyi entropy of the anisotropic spin-s Heisenberg chains in a z-magnetic field. We considered the half-odd integer spin-s chains, with s=1/2,3/2 and 5/2, and periodic and open boundary conditions. In the case of the spin-1/2 chain we were able to obtain accurate estimates of the new parity exponents pα(p)p_{\alpha}^{(p)} and pα(o)p_{\alpha}^{(o)} that gives the power-law decay of the oscillations of the α\alpha-Renyi entropy for periodic and open boundary conditions, respectively. We confirm the relations of these exponents with the Luttinger parameter KK, as proposed by Calabrese et al. [Phys. Rev. Lett. 104, 095701 (2010)]. Moreover, the predicted periodicity of the oscillating term was also observed for some non-zero values of the magnetization mm. We show that for s>1/2s>1/2 the amplitudes of the oscillations are quite small, and get accurate estimates of pα(p)p_{\alpha}^{(p)} and pα(o)p_{\alpha}^{(o)} become a challenge. Although our estimates of the new universal exponents pα(p)p_{\alpha}^{(p)} and pα(o)p_{\alpha}^{(o)} for the spin-3/2 chain are not so accurate, they are consistent with the theoretical predictions.Comment: revised version, accepted to PRB. 9 pages, 3 Figures, 4 Table

    Similar works