Differential privacy is a rigorous privacy condition achieved by randomizing
query answers. This paper develops efficient algorithms for answering multiple
queries under differential privacy with low error. We pursue this goal by
advancing a recent approach called the matrix mechanism, which generalizes
standard differentially private mechanisms. This new mechanism works by first
answering a different set of queries (a strategy) and then inferring the
answers to the desired workload of queries. Although a few strategies are known
to work well on specific workloads, finding the strategy which minimizes error
on an arbitrary workload is intractable. We prove a new lower bound on the
optimal error of this mechanism, and we propose an efficient algorithm that
approaches this bound for a wide range of workloads.Comment: 6 figues, 22 page