Nonsmooth Newton methods for set-valued saddle point problems

Abstract

We present a new class of iterative schemes for large scale set-valued saddle point problems as arising, e.g., from optimization problems in the presence of linear and inequality constraints. Our algorithms can be regarded either as nonsmooth Newton-type methods for the nonlinear Schur complement or as Uzawa-type iterations with active set preconditioners. Numerical experiments with a control constrained optimal control problem and a discretized Cahn–Hilliard equation with obstacle potential illustrate the reliability and efficiency of the new approach

    Similar works