Design of a laboratory bioreactor for engineering articular cartilage based on 3D printed nasal septum-like scaffolds

Abstract

«Η εκφύλιση των χόνδρων είναι μια σοβαρή πάθηση που επηρεάζει μεγάλο μέρος του πληθυσμού σε όλο το ηλικιακό φάσμα. Επί του παρόντος χρησιμοποιούνται διάφορες τεχνικές αποκατάστασης για μικρής έκτασης βλάβες όπως η αρθροπλαστική απόξεσης και ο υποχονδρικός τρυπανισμός, οι οποίες δεν μπορούν να επιδιορθώσουν βλάβες μεγαλύτερης έκτασης. Η Αναγεννητική Ιατρική προωθεί την Μηχανική Ιστών στο προσκήνιο των σύγχρονων μηχανικών τεχνικών, συνδυάζοντας καινοτόμα βιοσυμβατά υλικά, νέες μεθόδους μηχανικής ιστών όπως η τεχνολογία 3D εκτύπωσης και βιοδιαδικασίες που αποσκοπούν στην δημιουργία ποιοτικών μοσχευμάτων για εκτεταμένες βλάβες των χόνδρων. Κατάλληλο κυτταρικό περιβάλλον για δημιουργία ιστών μπορεί να επιτευχθεί με την ανάπτυξη αυτών των μοσχευμάτων σε βιοαντιδραστήρες. O κάθε βιοαντιδραστήρας χρησιμοποιεί διαφορετικές αρχές καλλιέργειας, και ορισμένοι από αυτούς όπως οι μικτού τύπου και οι βιοαντιδραστήρες διαπότισης επιστρατεύουν την άσκηση μηχανικών δυνάμεων επί του ικριώματος ώστε να επιτευχθεί μεγάλη κυτταρική πυκνότητα και ενισχυμένες μηχανικές ιδιότητες που οδηγούν στην δημιουργία καλύτερης ποιότητας χόνδρου. Αυτές οι ιδιαιτερότητες των βιοαντιδραστήρων μπορούν να αποτελέσουν εφαλτήριο κατασκευής εργαστηριακών βιοαντιδραστήρων, για την καλλιέργεια 3D εκτυπωμένων ρινικών διαφραγμάτων ως ένα λειτουργικό παράδειγμα υαλώδους χόνδρου».Cartilage degeneration is a severe disease affecting a significant part of the population at all ages. Various treatment modalities are currently used for small-sized cartilage defects, such as abrasion arthroplasty and subchondral drilling, but fail to repair larger-scale damages. Regenerative Medicine pushes Tissue Engineering (TE) to the forefront of modern engineering techniques combining novel biocompatible materials, new tissue engineering methods, like 3D printing technology and bioprocesses trying to create quality transplants for large cartilage defects. The appropriate cell environment for engineered tissues can be achieved through growth of the tissue-engineered constructs into bioreactors. Each bioreactor uses different principles for culturing processes, and some of them mostly mixed and perfusion bioreactors, use different kind of mechanical forces on the scaffold to achieve high cell densities, enhanced mechanical properties leading to better quality of engineered cartilage. These advantageous particularities can be used to create a laboratory bioreactor design, for culturing 3D printed nasal septum cartilage as a working example of hyaline cartilage

    Similar works