Robustness of MULTIMOORA: a method for multi-objective optimization

Abstract

Daugiatikslė optimizacija iškelia skirtingus tikslus, kurie išsaugo tikslams būdingus mato vienetus. Santykių Sistemos (Ratio System) vidiniai sprendiniai suteikia galimybę naudoti bedimensius dydžius. Taip pat, Santykių Sistema (Ratio System) leidžia taikyti Atskaitos taško (Reference Point) metodiką. Sujungus abu metodus išvesta MOORA (daugiatikslis optimizavimas remiantis santykio analize) metodo teorija. Pasiekti dar tikslesnius rezultatus galima taikant pilnąją sandaugos formą (Full Multiplicative Form), kurią apjungia MULTIMOORA (MOORA plius pilnoji sandaugos forma) metodas. Išbandžius MULTIMOORA metodo stiprumą gaunami tikslūs rezultatai. Multi-Objective Optimization takes care of different objectives with the objectives keeping their own units. The internal mechanical solution of a Ratio System, producing dimensionless numbers, is preferred. The ratio system creates the opportunity to use a second approach: a Reference Point Theory, which uses the ratios of the ratio system. This overall theory is called MOORA (Multi-Objective Optimization by Ratio Analysis). The results are still more convincing if a Full Multiplicative Form is added forming MULTIMOORA. The control by three different approaches forms a guaranty for a solution being as non-subjective as possible. MULTIMOORA, tested after robustness, showed positive results

    Similar works