We consider the outer automorphism group Out(A_Gamma) of the right-angled
Artin group A_Gamma of a random graph Gamma on n vertices in the Erdos--Renyi
model. We show that the functions (log(n)+log(log(n)))/n and
1-(log(n)+log(log(n)))/n bound the range of edge probability functions for
which Out(A_Gamma) is finite: if the probability of an edge in Gamma is
strictly between these functions as n grows, then asymptotically Out(A_Gamma)
is almost surely finite, and if the edge probability is strictly outside of
both of these functions, then asymptotically Out(A_Gamma) is almost surely
infinite. This sharpens results of Ruth Charney and Michael Farber from their
preprint "Random groups arising as graph products", arXiv:1006.3378v1.Comment: 29 pages. Mostly rewritten, results tightened, statements corrected,
gaps fille