Nonlinear feedbacks in the Earth System provide mechanisms that can prove
very useful in understanding complex dynamics with relatively simple concepts.
For example, the temperature and the ice cover of the planet are linked in a
positive feedback which gives birth to multiple equilibria for some values of
the solar constant: fully ice-covered Earth, ice-free Earth and an intermediate
unstable solution. In this study, we show an analogy between a classical
dynamical system approach to this problem and a Maximum Entropy Production
(MEP) principle view, and we suggest a glimpse on how to reconcile MEP with the
time evolution of a variable. It enables us in particular to resolve the
question of the stability of the entropy production maxima. We also compare the
surface heat flux obtained with MEP and with the bulk-aerodynamic formula.Comment: 29 pages, 12 figure