A "triple trade-off" capacity region of a noisy quantum channel provides a
more complete description of its capabilities than does a single capacity
formula. However, few full descriptions of a channel's ability have been given
due to the difficult nature of the calculation of such regions---it may demand
an optimization of information-theoretic quantities over an infinite number of
channel uses. This work analyzes the d-dimensional Unruh channel, a noisy
quantum channel which emerges in relativistic quantum information theory. We
show that this channel belongs to the class of quantum channels whose capacity
region requires an optimization over a single channel use, and as such is
tractable. We determine two triple-trade off regions, the quantum dynamic
capacity region and the private dynamic capacity region, of the d-dimensional
Unruh channel. Our results show that the set of achievable rate triples using
this coding strategy is larger than the set achieved using a time-sharing
strategy. Furthermore, we prove that the Unruh channel has a distinct structure
made up of universal qudit cloning channels, thus providing a clear
relationship between this relativistic channel and the process of stimulated
emission present in quantum optical amplifiers.Comment: 26 pages, 4 figures; v2 has minor corrections to Definition 2.
Definition 4 and Remark 5 have been adde