Functional linear regression analysis aims to model regression relations
which include a functional predictor. The analog of the regression parameter
vector or matrix in conventional multivariate or multiple-response linear
regression models is a regression parameter function in one or two arguments.
If, in addition, one has scalar predictors, as is often the case in
applications to longitudinal studies, the question arises how to incorporate
these into a functional regression model. We study a varying-coefficient
approach where the scalar covariates are modeled as additional arguments of the
regression parameter function. This extension of the functional linear
regression model is analogous to the extension of conventional linear
regression models to varying-coefficient models and shares its advantages, such
as increased flexibility; however, the details of this extension are more
challenging in the functional case. Our methodology combines smoothing methods
with regularization by truncation at a finite number of functional principal
components. A practical version is developed and is shown to perform better
than functional linear regression for longitudinal data. We investigate the
asymptotic properties of varying-coefficient functional linear regression and
establish consistency properties.Comment: Published in at http://dx.doi.org/10.3150/09-BEJ231 the Bernoulli
(http://isi.cbs.nl/bernoulli/) by the International Statistical
Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm