research

Fractional diffusion equations and processes with randomly varying time

Abstract

In this paper the solutions uν=uν(x,t)u_{\nu}=u_{\nu}(x,t) to fractional diffusion equations of order 0<ν20<\nu \leq 2 are analyzed and interpreted as densities of the composition of various types of stochastic processes. For the fractional equations of order ν=12n\nu =\frac{1}{2^n}, n1,n\geq 1, we show that the solutions u1/2nu_{{1/2^n}} correspond to the distribution of the nn-times iterated Brownian motion. For these processes the distributions of the maximum and of the sojourn time are explicitly given. The case of fractional equations of order ν=23n\nu =\frac{2}{3^n}, n1,n\geq 1, is also investigated and related to Brownian motion and processes with densities expressed in terms of Airy functions. In the general case we show that uνu_{\nu} coincides with the distribution of Brownian motion with random time or of different processes with a Brownian time. The interplay between the solutions uνu_{\nu} and stable distributions is also explored. Interesting cases involving the bilateral exponential distribution are obtained in the limit.Comment: Published in at http://dx.doi.org/10.1214/08-AOP401 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Similar works