We consider application of the discrete Fourier transform-spread orthogonal
frequency-division multiplexing (DFT-spread OFDM) technique to high-speed fiber
optic communications. The DFT-spread OFDM is a form of single-carrier technique
that possesses almost all advantages of the multicarrier OFDM technique (such
as high spectral efficiency, flexible bandwidth allocation, low sampling rate
and low-complexity equalization). In particular, we consider the optical
DFT-spread OFDM system with polarization division multiplexing (PDM) that
employs a tone-by-tone linear minimum mean square error (MMSE) equalizer. We
show that such a system offers a much lower peak-to-average power ratio (PAPR)
performance as well as better bit error rate (BER) performance compared with
the optical OFDM system that employs amplitude clipping.Comment: This idea was originally submitted at Nov. 28th, 2009. After many
times of rejection and resubmission, it was finally accepted by the journal
of Advances in Optical Technologie