We fabricated dye sensitized graphene antidot superlattices with the purpose
of elucidating the role of the localized edge state density. The fluorescence
from deposited dye molecules was found to strongly quench as a function of
increasing antidot filling fraction, whereas it was enhanced in unpatterned but
electrically back-gated samples. This contrasting behavior is strongly
indicative of a built-in lateral electric field that accounts for fluorescence
quenching as well as p-type doping. These findings are of great interest for
light-harvesting applications that require field separation of electron-hole
pairs.Comment: NanoLetters, 201