Abstract

Publication bias, the fact that studies identified for inclusion in a meta analysis do not represent all studies on the topic of interest, is commonly recognized as a threat to the validity of the results of a meta analysis. One way to explicitly model publication bias is via selection models or weighted probability distributions. We adopt the nonparametric approach initially introduced by Dear (1992) but impose that the weight function ww is monotonely non-increasing as a function of the pp-value. Since in meta analysis one typically only has few studies or "observations", regularization of the estimation problem seems sensible. In addition, virtually all parametric weight functions proposed so far in the literature are in fact decreasing. We discuss how to estimate a decreasing weight function in the above model and illustrate the new methodology on two well-known examples. The new approach potentially offers more insight in the selection process than other methods and is more flexible than parametric approaches. Some basic properties of the log-likelihood function and computation of a pp-value quantifying the evidence against the null hypothesis of a constant weight function are indicated. In addition, we provide an approximate selection bias adjusted profile likelihood confidence interval for the treatment effect. The corresponding software and the datasets used to illustrate it are provided as the R package selectMeta. This enables full reproducibility of the results in this paper.Comment: 15 pages, 2 figures. Some minor changes according to reviewer comment

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 09/07/2013