We have implemented the newly-introduced, coherence-based technique of x-ray
near-field speckle (XNFS) at 8-ID-I at the Advanced Photon Source. In the near
field regime of high-brilliance synchrotron x-rays scattered from a sample of
interest, it turns out, that, when the scattered radiation and the main beam
both impinge upon an x-ray area detector, the measured intensity shows
low-contrast speckles, resulting from interference between the incident and
scattered beams. We built a micrometer-resolution XNFS detector with a high
numerical aperture microscope objective and demonstrate its capability for
studying static structures and dynamics at longer length scales than
traditional far field x-ray scattering techniques. Specifically, we
characterized the structure and dynamics of dilute silica and polystyrene
colloidal samples. Our study reveals certain limitations of the XNFS technique,
which we discuss.Comment: 53 pages, 16 figure