research

Developing a low-cost beer dispensing robotic system for the service industry

Abstract

As the prices of commercially available electronic and mechanical components decrease, manufacturers such as Devantech and Revolution Education have made encoded motor controller systems and microcontrollers very accessible to engineers and designers. This has made it possible to design sophisticated robotic and mechatronic systems very rapidly and at relatively low cost. A recent project in the Autonomous Systems Lab at Middlesex University, UK was to design and build a small, automated, robotic bartender based around the 5 litre Heineken 'Draughtkeg' system, which is capable of patrolling a bar and dispensing beer when signalled to by a customer. Because the system was designed as a commercial product, design constraints focused on keeping the build cost down, and so electronic components were sourced from outside companies and interfaced with a bespoke chassis and custom mechanical parts designed and manufactured on site at the University. All the programming was conducted using the proprietary BASIC language, which is freely available from the PicAXE supplier at no cost. This paper will discuss the restrictions involved in building a robot chassis around 'off-theshelf' components, and the issues arising from making the human-machine interaction intuitive whilst only using low-cost ultrasonic sensors. Programming issues will also be discussed, such as the control of accuracy when interfacing a PicAXE microcontroller with a Devantech MD25 Motor Controller board. Public live testing of the system was conducted at the Kinetica Art Fair 2010 event in London and has since been picked up by websites such as Engadget.com and many others. Feedback on the system will be described, as well as the refinements made as a result of these test

    Similar works

    Full text

    thumbnail-image

    Available Versions