A new approach to fabricate nanometer-scale silicon devices is recently attracting much attention, which combines the conventional top-down silicon processing techniques and the bottom-up assembly of silicon nanodots, whose structures are controlled on the atomic scale. This technique enables to investigate the electronic states and transport properties of strongly-coupled multiple nanodots which will be crucial particularly for quantum information device applications. Various unique properties have been studied in such systems. For example, electrostatic interactions have been investigated for double Si dots [1] and for the two-dimensional Si multidots [2]. Coherent wavefunction coupling and associated quasi-molecular states have also been observed for a tunnel-coupled double Si nanodots [3]. In addition, metal-insulator transition has been investigated for an artificial lattice of self-organized nano-paraticles [4]. In this paper we propose and examine a novel technique of fabricating nanoscale transistors with a Si nanodot cluster as a channel based on the self-assembly of the nanocrystalline Si dots from the solution on the patterned SOI substrates