Averaged Iterative Water-Filling Algorithm: Robustness and Convergence


The convergence properties of the Iterative water-filling (IWF) based algorithms have been derived in the ideal situation where the transmitters in the network are able to obtain the exact value of the interference plus noise (IPN) experienced at the corresponding receivers in each iteration of the algorithm. However, these algorithms are not robust because they diverge when there is it time-varying estimation error of the IPN, a situation that arises in real communication system. In this correspondence, we propose an algorithm that possesses convergence guarantees in the presence of various forms of such time-varying error. Moreover, we also show by simulation that in scenarios where the interference is strong, the conventional IWF diverges while our proposed algorithm still converges

    Similar works

    Full text


    Available Versions