unknown

Bidirectional Propulsion of Devices Along the Gastrointestinal Tract Using Electrostimulation

Abstract

This thesis describes a method for propelling devices such as video capsule endoscopes in either direction along the small intestines using electrostimulation-induced muscular contractions. When swallowed, passive diagnostic ‘one-shot’ devices rely on sporadic peristaltic movement, possibly missing vital ‘areas of interest’. This bidirectional propulsion method provides active control for that all-important ‘second look’. Design considerations, within the dimensional constraints, required a device shape that would achieve maximum propulsion from safely induced useful contractions produced by the electrodes and encapsulated miniature electrostimulator. Construction materials would have to produce minimal friction against the mucosal surface while having the physical properties to facilitate construction and electrode attachment. Design investigations included coefficient of friction measurements of different construction materials and the evaluation of different capsule and electrode dimensions over a range of stimulation parameters, to obtain optimal propulsion. A swallowable 11 mm diameter device was propelled at 121 mm/min with stimulation parameters of 12.5 Hz, 20 ms, at 20 V in an anaesthetised pig. A modified passive video capsule endoscope was propelled at 120 mm/min with stimulation parameters of 12.5 Hz, 20 ms, at 10 V in an unanaesthetised human volunteer. A radio-controlled capsule incorporating an electrostimulator, voltage converter and 3 V power supply was propelled at 60 mm/min with stimulation parameters of 12.5 Hz, 20 ms, and 30 V in an anaesthetised pig. 4 Other possible uses of electrostimulation were investigated including propulsion of anally administered large intestine devices and introduction of the intestinal mucosal surface into a biopsy chamber. Results are presented. The ultimate aim of the project was to provide bidirectional propulsion for wireless remote controlled devices along the gastrointestinal tract utilising contractile force produced by electrostimulation of the intestinal wall. The controllability of this system could provide clinicians with a real time view of the entire small intestines without surgical enteroscopy

    Similar works