Requirements for BIM-based building design coordination processes

Abstract

Building design coordination is a critical and challenging task to ensure that the design meets the functional, aesthetic, and economic requirements of project stakeholders. The cost of design coordination can be significant, with some estimating as high as two percent of the total cost on projects. It is therefore imperative that coordination issues get resolved as efficiently as possible, particularly given that thousands of conflicts may be identified during design coordination. Even with implementation of Building Information Modelling (BIM) project participants still face significant challenges that disrupt and hinder the coordination process. I have identified three critical issues that impact the successful implementation of BIM in design coordination processes: (1) the extent of BIM-based design coordination processes and protocols implemented, (2) the efficiency and ease in which practitioners interact with state of the art of BIM tools, and (3) the effectiveness in which design coordination issues are captured, represented and documented. Very little research has specifically looked at the BIM-based building design coordination with such focus. This dissertation investigates BIM-based building design coordination through the lens of two state of the art public sector projects. The research involved embedded case study analyses and a mixed-method contextualist research approach that included iterative grounded theory and co-production of knowledge. The investigation of BIM-based design coordination resulted in the formalization of design coordination processes, identification of bottlenecks faced by practitioners, and development of design considerations for BIM tools. The exploration of design coordination meetings resulted in taxonomy of interactions with design artifacts, outlining the relationships between goals, artifacts, interactions and transitions. The research on design coordination issue representation resulted in a classification taxonomy that explicitly represents process-based, model-based, and physical design issues. This research has many practical implications to the construction industry, as well as the BIM software development community. The research enables practitioners and researchers to better understand the challenges of BIM-based design coordination processes, helps the software development community to design state of the art BIM tools to better support practitioner interactions and navigations with BIM, and better manage and represent design coordination issues encountered throughout the coordination process.Applied Science, Faculty ofCivil Engineering, Department ofGraduat

    Similar works