research

n-Harmonic mappings between annuli

Abstract

The central theme of this paper is the variational analysis of homeomorphisms h\colon \mathbb X \onto \mathbb Y between two given domains X,YRn\mathbb X, \mathbb Y \subset \mathbb R^n. We look for the extremal mappings in the Sobolev space W1,n(X,Y)\mathscr W^{1,n}(\mathbb X,\mathbb Y) which minimize the energy integral Eh=XDh(x)ndx. \mathscr E_h=\int_{\mathbb X} ||Dh(x)||^n dx. Because of the natural connections with quasiconformal mappings this nn-harmonic alternative to the classical Dirichlet integral (for planar domains) has drawn the attention of researchers in Geometric Function Theory. Explicit analysis is made here for a pair of concentric spherical annuli where many unexpected phenomena about minimal nn-harmonic mappings are observed. The underlying integration of nonlinear differential forms, called free Lagrangians, becomes truly a work of art.Comment: 120 pages, 22 figure

    Similar works