CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Cheminformatics models based on machine learning approaches for design of USP1/UAF1 abrogators as anticancer agents
Authors
Abhinav Grover
AC Schierz
+59 more
Aditi Singh
AE Sims
AY Amerik
AZ Dudek
BF Jensen
CVV Cortes
D Branzei
D Hoeller
Divya Wahi
F Cheng
H Kim
H Mistry
HD Ulrich
I Garcia-Santisteban
J Murai
J Shen
JB Baell
JJ Sacco
JK Dhanjal
JL Melville
JM Fraile
JM Kim
JR Huth
JR Quinlan
K Hofmann
K Liu
L Breiman
LJ Jensen
M Hann
MA Cohn
MA Cohn
MA Villamil
MJ Jones
N Friedman
NJ Curtin
PL Kannouche
Preeti Rana
Q Liang
R Blagus
RD Kennedy
Ritu Jain
S Fong
S Hussain
S Jamal
S Jamal
SA Williams
Salma Jamal
SM Nijman
SM Nijman
Sukriti Goyal
T Helleday
TT Huang
TT Huang
V Periwal
V Periwal
VH Oestergaard
Y Wang
Z Zhuang
ZJ Chen
Publication date
Publisher
'Springer Science and Business Media LLC'
Doi
Abstract
Abstract is not available.
Similar works
Full text
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1007%2Fs11693-015-...
Last time updated on 11/12/2019