We present and study an agent-based model of T-Cell cross-regulation in the
adaptive immune system, which we apply to binary classification. Our method
expands an existing analytical model of T-cell cross-regulation (Carneiro et
al. in Immunol Rev 216(1):48-68, 2007) that was used to study the
self-organizing dynamics of a single population of T-Cells in interaction with
an idealized antigen presenting cell capable of presenting a single antigen.
With agent-based modeling we are able to study the self-organizing dynamics of
multiple populations of distinct T-cells which interact via antigen presenting
cells that present hundreds of distinct antigens. Moreover, we show that such
self-organizing dynamics can be guided to produce an effective binary
classification of antigens, which is competitive with existing machine learning
methods when applied to biomedical text classification. More specifically, here
we test our model on a dataset of publicly available full-text biomedical
articles provided by the BioCreative challenge (Krallinger in The biocreative
ii. 5 challenge overview, p 19, 2009). We study the robustness of our model's
parameter configurations, and show that it leads to encouraging results
comparable to state-of-the-art classifiers. Our results help us understand both
T-cell cross-regulation as a general principle of guided self-organization, as
well as its applicability to document classification. Therefore, we show that
our bio-inspired algorithm is a promising novel method for biomedical article
classification and for binary document classification in general