Assimilating MODIS and AMSR-E Snow Observations in a Snow Evolution Model

Abstract

In this paper four simple computationally inexpensive, direct insertion data assimilation schemes are presented, and evaluated, to assimilate Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover, which is a binary observation, and Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E) snow water equivalent (SWE) observations, which are at a coarser resolution than MODIS, into a numerical snow evolution model. The four schemes are 1) assimilate MODIS snow cover on its own with an arbitrary 0.01 m added to the model cells if there is a difference in snow cover; 2) iteratively change the model SWE values to match the AMSR-E equivalent value; 3) AMSR-E scheme with MODIS observations constraining which cells can be changed, when both sets of observations are available; and 4) MODIS-only scheme when the AMSR-E observations are not available, otherwise scheme 3. These schemes are used in the winter of 2006/07 over the southeast corner of Colorado and the tri-state area: Wyoming, Colorado, and Nebraska. It is shown that the inclusion of MODIS data enables the model in the north domain to have a 15% improvement in number of days with a less than 10% disagreement with the MODIS observation 24 h later and approximately 5% for the south domain. It is shown that the AMSR-E scheme has more of an impact in the south domain than the north domain. The assimilation results are also compared to station snow-depth data in both domains, where there is up-to-a-factor-of-5 underestimation of snow depth by the assimilation schemes compared with the station data but the snow evolution is fairly consistent

    Similar works