To increase phenylpropanoid constituents and energy content in the versatile C4 grass sorghum (Sorghum bicolor [L.] Moench), sorghum genes for protiens related to monolignol biosynthesis were overexpressed: SbMyb60 (transcriptional activator), SbPAL (phenylalanine ammonia ase), Bmr2 (4-coumarate: CoA ligase), and SbC3H (coumaroyl shikimate 3-hydroxylase). Overexpression lines were evaluted for responses to stalk pahtogens under greenhouse and field conditions. Greenhouse-grown plants were inoculated with Fusarium thapsinum (Fusarium stalk rot) and Macrophomia phaseolina (charocal rot), which cause yield-reducing diseases. F. thapsinum-inoculated overexpression plants had mean lesion lengths not significantly different than wild-type, except for significantly smaller lesions on two of three SbMyb60 and one of two SbCCoAOMT lines. M. phaseolina-inoculated expression lines had lesions not significantly different from wild-type except one SbPAL line (of two lines studied) with mean lesion lengths significantly larger. Field-grown SbMyb60 and SbCCoAOMT overexpression plants were inoculated with F. thapsinum. Mean lesions of SbMyb60 lines were similar to wild-type, one SbCCoAOMT had larger lesions, whereas the other line was not significantly different than wild-type. Because overexpression of SbMyb60, Bmr2, or SbC3H may not render sorghum more supceptible to stalk rots, these lines may provide sources for development of sorghum with increased phenylpropaniod concentrations