An investigation into the performance of an optically-interrogated Rogowski coil over temperatures up to 80 °C is presented. Preliminary thermal tests reveal that the sensor response is temperature-dependent and the measurement errors are increased at higher temperatures. Compensation of temperature effects is, therefore, necessary in order for the sensors to meet the requirements of protection and metering classes specified by relevant IEC standards over the considered operating temperature range. This can, however, only be achieved when the utilised sensor interrogator is adapted to ensure sufficient resolution and accuracy from a generally low-output transducer. As such, the design of a new multiplexing, interferometric interrogation platform is also proposed in this paper